Heat-shrink tubing is manufactured from a thermoplastic material such as polyolefin, fluoropolymer (such as FEP, PTFE or Kynar), PVC, neoprene, silicone elastomer or Viton.

According to the exact material used, there are two ways that heat shrink may work. If the material contains many monomers, then when the tubing is heated the monomers polymerise. This increases the density of the material as the monomers become bonded together, therefore taking up less space. Accordingly, the volume of the material shrinks[citation needed].

Heat shrink can also be expansion-based. This process involves producing the tubing as normal, heating it to just above the polymer's crystalline melting point and mechanically stretching the tubing (often by inflating it with a gas); finally, it is rapidly cooled. Later, when heated, the tubing will relax back to the un-expanded size.

The material is often cross-linked through the use of electron beams,[1] peroxides, or moisture. This cross-linking helps to make the tubing maintain its shape, both before and after shrinking.

For external use, heat shrink tubing often has a UV stabiliser added.